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1. Introduction17

Let R be a Riemann Surface defined by the equation:

y3 =
i=3m∏
i=1

(z − λi). (1)
19

We find relations that are satisfied by theta constants with rational characteristics
evaluated at τR, the period matrix of R. Special type identities for period matrices21

are known in the case of a general Riemann Surface (Schottky–Jung identities).
According to Mumford, for hyperelliptic curves there are vanishing theta constants23

of even characteristics that characterize the associated period matrix. Special rela-
tions among non vanishing theta constants evaluated at period matrices of hyper-25

elliptic curves were obtained by Frobenius.
The original Schottky problem seeks special relations among theta constants27

that characterize the entire moduli space of algebraic curves of genus g. In this
note, we seek special relations that are satisfied by more specialized sets of curves29

such as cyclic covers of the sphere of degree n. When n = 2, cyclic covers constitute
the set of hyperelliptic curves. The next case is n = 3. Here, we find relations31

satisfied by theta constants with rational characteristics evaluated at the period
matrices of such curves. These identities are consequence of the Thomae formula33

for cyclic n sheeted covers of the sphere. This formula expresses powers of such theta
constants evaluated at the period matrix τR by polynomial expressions in the λi. A35
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relation between these polynomials products a relation between the corresponding1

theta constants. Using the representation theory of S3m, the symmetric group of
degree 3m, we find a basis for the space of these polynomials, as a result we obtain3

relations between the corresponding theta constants.
For the simplest case of 6 branch points, our results overlap those of Matsumoto5

[7]. In his paper, Matsumoto finds the explicit action of S6 on theta constants
evaluated at τR. He obtains the branch points λi as quotients of theta constants.7

He also obtains identities between cubic powers of these constants, which coincide
with those in the last section of our note. Using the representation theory of S6, we9

see that the space generated by theta constants is 5 dimensional. This seems to be
a new result even when g = 4.11

2. The Thomae Formula for Cyclic Covers and Relations Between
Theta Constants13

Following Nakayashiki [9], we explain the general Thomae formula for an algebraic
curve R satisfying the equation:

y3 =
i=3m∏
i=1

(z − λi).

Let f : R �→ CP 1 be the map given by (z, y) �→ z. Now, let {∞1,∞2,∞3} =
f−1{∞} and let Qi = f−1(λi) be the unique branch point on R that is the pre15

image of λi. Fix a canonical homology basis a1, a2, . . . , a3m−2, b1, b2, . . . , b3m−2 onR.
Thus, aiaj = 0 = bibj , i �= j and aibi = −1. Let v1 · · · v3m−2 be a basis of normalized17

holomorphic differentials with respect to the basis a1, a2, . . . , a3m−2, b1, . . . , b3m−2.
Thus,

∫
ai
vj = δij and

∫
bi
vj = τij . The g× g matrix, τ = τij is symmetric and Imτ19

defines positive definite quadratic form. Fix an ordering of the λi. This ordering
induces an ordering of the branch points {Q1, Q2, Q3, . . . , Q3m}. We abuse notation21

by identifying Qi with its branch point image. Thus λ1 will correspond to Q1, λ2

to Q2, etc.23

Let φ be the automorphism of order 3 defined by (z, y) �→ (z, ωy) with ω3 =
1, ω = e

2πi
3 . For divisors α and β on R, define α ≡ β if there exists a meromorphic25

function g : R �→ CP 1 with divisor div(g) = α − β. The group Div0/≡ is Jac(R),
the Jacobian of R. (Div0 — divisors of degree 0.) Let ψ be the mapping ψ : Div �→27

Div/≡ . Then, the following lemma is true:

Lemma 2.1. Let P1, P2 ∈ R,P1 �= P2 and

Di = Pi + φ(Pi) + φ2(Pi), i = 1, 2

then ψ(D1) ≡ ψ(D2).29

Proof. For P1, P2 as above, define f1(P ) = (f(P ) − f(P1)/f(P ) − f(P2)), then
div(f1) = D1 −D2.31

Define D = ψ(Pi + φ(Pi) + φ2(Pi)) to be the equivalence class in the Jacobian.
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Lemma 2.2. Let K be the canonical divisor of the a holomorphic differential.1

Define ∆ to be a divisor such that 2∆ = K, then the following holds:

(1) D ≡ 3Qi ≡ ∞1 + ∞2 + ∞3,3

(2) K ≡ (2m− 2)D,
(3)

∑3m
1 Qi ≡ mD.5

Proof. The first item follows exactly as in the proof of the previous lemma.
To show the rest, note that z(dz/w2) is a holomorphic differential with divisor7

Q6m−6
1 .

Now let Λ = Λ0,Λ1,Λ2 be a partition of {1, 2, 3, 4, 5, . . .3m} with each |Λi| = m.

For each subset S of {1, 2 . . .3m} we set,

XS =
∑

Qj∈S

Qj .

We are interested in the following divisor eΛ associated with the partition:

eΛ = XΛ0 + 2XΛ1 −D − ∆.

Choose a base point P0 on R and for each P consider the mapping ΦP0(P ) =9

(
∫ P

P0
v1 . . .

∫ P

P0
v3m−2). Using the definition of divisors, we see that ΦP0 extends to the

period map ΦP0 : Div(R) �→ C3m−2. The final definition will be of theta constants11

with characteristics:

Definition 2.3. Let Hg be the collection of g× g symmetric matrices, τ such that
the imaginary part of τ forms a positive definite form. For

[ ε
ε′

i
, ε, ε′, real vectors g

vectors and τ ∈ Hg, we define theta constant Θ
[ ε
ε′

i
(τ) with characteristics

[ ε
ε′

i
as

an infinite series given by:

Θ
[
ε

ε′

]
(τ) =

∑
lεZ2g

exp 2πi
{

1
2

(
l +

ε

2

)t

τ
(
l +

ε

2

)
+

(
l +

ε

2

)t ε′

2

}
.

These series are uniformly and absolutely convergent on compact subsets of Hg.13

For each w ∈ C3m−2, associate a unique vector 2g vector
[ w1

w2

i
and w1, w2 are unique

vectors real g dimensional vectors such that: w = w1 + τw2. Composing with the15

map pP0 , we associate theta constants with characteristics to divisors. Nakayashiki
[9] proves the following theorem of Bershadsky and Radul [2]:17

Theorem 2.4. Let θ[eΛ](τ) be a theta constant associated with Λ through the period
map pP0 . Then, eΛ is a point of order 6 on the Jacobian and19

θ[eΛ]6 (τR) = CΛ(detA)3((Λ0Λ0)(Λ1Λ1)(Λ2Λ2))
3(Λ0Λ1)(Λ1Λ2)(Λ0Λ2). (2)

Here, A is the matrix of certain holomorphic 1 forms integrated with respect to ai

and CΛ is a constant depending only on the partition. Moreover,

(ΛiΛi) =
∏
k<l

(λik
− λil

), (ΛiΛj) =
m∏

k=1,l=1

(λik
− λjl

),
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where

Λi = {i1 < · · · < im}, Λj = {j1 < · · · < jm}.

As explained in the introduction, one of the problems in the theory of complex1

algebraic curves is to understand the set of period matrices associated with certain
families of curves. For example, we can seek certain algebraic relations satisfied by3

theta constants evaluated at period matrices of curves belonging to such families.
Because theta constants are modular forms for subgroups of Sp(g,Z) results of this5

type may have number theoretic significance.
We apply Theorem 2.4 to generate special relations between theta functions with

characteristics eΛ, evaluated at τR. For each partition, Λ, we denote the polynomial
on the right-hand side of the equation above by pΛ. To obtain identities, we expand
the polynomials and search for identities between them. The key observation on
the polynomials: First, choose Λ = {{1, 2, . . . ,m}, {m+1, . . . , 2m}, {2m, . . . , 3m}}.
Then, by the definition of pΛ we have:

pΛ =


 j=m∏

i<j,j=2

(λi − λj)
j=2m,i=2m−1∏

i<j,i=m+1,j=m+2

(λi − λj)
j=3m∏

i<j,j=2m+1

(λi − λj)




3

×
i=m,j=2m∏
i=1,j=m+1

(λi − λj)
i=2m,j=3m∏

i=m+1,j=2m+1

(λi − λj)
i=m,j=3m∏

i=1,j=2m+1

(λi − λj). (3)

Now, write
 j=m∏

i<j,j=2

(λi − λj)
j=2m,i=2m−1∏

i<j,i=m+1,j=m+2

(λi − λj)
j=3m∏

i<j,j=2m+1

(λi − λj)




3

=


 j=m∏

i<j,j=2

(λi − λj)
j=2m,i=2m−1∏

i<j,i=m+1,j=m+2

(λi − λj)
j=3m∏

i<j,j=2m+1

(λi − λj)




2

×

 j=m∏

i<j,j=2

(λi − λj)
j=2m,i=2m−1∏

i<j,i=m+1,j=m+2

(λi − λj)
j=3m∏

i<j,i=2m,j=2m+1

(λi − λj)


.

We see that we can rewrite pΛ for this partition as:

pΛ =


 j=m∏

i<j,j=2

(λi − λj)
j=2m,i=2m−1∏

i<j,i=m+1,j=m+2

(λi − λj)
j=3m∏

i<j,j=2m+1

(λi − λj)




2

× disc(λ1 · · ·λ3m),

where

disc(λ1 · · ·λ3m) =
∏

i�=j,1≤i,j≤3m

(λi − λj).
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Observe that this holds for every partition. That is,

(Λ0Λ0)(Λ1Λ1)(Λ2Λ2)3(Λ0Λ1)(Λ1Λ2)(Λ0Λ2)

= (Λ0Λ0)(Λ1Λ1)(Λ2Λ2)2(Λ0Λ0)(Λ1Λ1)(Λ2Λ2)(Λ0Λ1)(Λ1Λ2)(Λ0Λ2)

= ((Λ0Λ0)(Λ1Λ1)(Λ2Λ2))2 disc (λ1, . . . λ3m). (4)

Since the factor disc(λ1, . . . , λ3m) is independent of the partition Λ0,Λ1,Λ2, we
conclude that identities between ±θ3[eΛ] are equivalent to identities between the
polynomials:

((Λ0Λ0)(Λ1Λ1)(Λ2Λ2)).

The group S3m acts naturally on the polynomials ((Λ0Λ0)(Λ1Λ1)(Λ2Λ2)) by its1

action on the partitions of {1 · · ·3m}. Thus, Span(((Λ0Λ0)(Λ1Λ1)(Λ2Λ2)), the vec-
tor space spanned by these polynomials, provides us with a representation of S3m.3

We exhibit a basis for this space of polynomials in the next section.

3. Explicit Basis5

In this section, we provide an explicit basis for the space of polynomials defined in
Sec. 2. We do this by following the process described in [5] to construct a basis for the7

irreducible representations of Sn. For the complex numbers, these representations
are completely classified. We describe the construction for any representation of the9

symmetric group and obtain the relevant case for cyclic covers as an immediate
corollary. At this point, we must assume that the reader is familiar with some11

notions from the representation theory of Sn.
Let n be a natural number and let k1 · · · km be a partition of n. That is,13 ∑m

i=1 ki = n and k1 ≥ k2 ≥ k3 · · · ≥ km.

Definition 3.1. A Young diagram associated to a partition consists of m rows such15

that the ith row has ki elements of integers.

Definition 3.2. Let Y be a Young diagram. A tableau is obtained by arranging17

the numbers {1 · · ·n} within the m rows of Y so that:

• Each row contains exactly ki elements,19

• The numbers distributed in each row are arranged in increasing order.

Assume that Λ = {Λ0, . . . ,Λk} are a tableau of n. Choose an ordering for
1, . . . , n. For each member of the tableau Λi = i1 < · · · < il define the polynomials:

(ΛiΛi) =
∏

ik<il,{ik,il}∈Λi

(λik
− λil

.),

and,

pΛ =
k∏

i=1

(ΛiΛi).
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Sn acts on Λ and, therefore acts on the polynomials pΛ. We are interested in finding1

a basis for the linear span of pΛ. For this purpose, we use a modification of the
Garnier relation (7.1) given in [5].a Arrange the tableau in columns (i.e. the first3

column will be elements of Λ0 the second column elements of Λ1 etc). Overall, we
have k columns for Λ. Let X be a subset of the ith column of Λ and let Y be a5

subset of the i+1th column of Λ. Let σ1 · · ·σk be coset representatives for SX ×SY

in SX∪Y . Then, we have the Garnier relations:7

Theorem 3.3. Let µi denote the number of elements in the ith column of Λ. If
|X ∪ Y | > µi, then

k∑
m=1

signσm(pσmΛ) = 0.

Proof. If |X ∪Y | > µi, then by the pigeon hole principle there exists an involution
δ under which σmΛ is invariant. Thus,

k∑
m=1

sign σm(pσmΛ) =
k∑

m=1

sign σm(pδσmΛ)

= −
k∑

m=1

sign σm (pσmΛ) = 0.

In order to exhibit an explicit basis, we define a standard Young tableau.

Definition 3.4. A standard tableau is a tableau whose the rows and the columns9

are arranged in increasing order.

Definition 3.5. Let Λ1 and Λ2 be tabloids. Then, we set Λ1 < Λ2 if there is an i11

such that:

• if j > i, then j is in the same column of Λ1,Λ2,13

• i is in a column further left in Λ1 than Λ2.

It is easy to see that the ordering defined above imposes total ordering on the15

tabloids.

Theorem 3.6. Let Λ1 · · ·Λk be the collection of standard tableaus for a given par-17

tition. Then, pΛ1 · · · pΛk is a basis for the vector space spanned by Λ.

Proof. We follow the proof given in [5]. We show that pΛk spans any other poly-19

nomial corresponding to our partition. Let t be a tableau and suppose by in-
duction that the theorem is proved for each tableau t1, such that t1 < t. If t21

is non standard there exists adjacent columns a1 < · · · < aq < · · · < ar and

aWe were not able to find a reference to our approach for constructing Specht modules, though
we are confident it’s a folklore.
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b1 < b2 < · · · < bq < · · · bs such that aq > bq. Apply the Garnier relations for1

X = {a1, . . . , ar}, Y = {b1, . . . , bq}. For each σ, a representative of SX × SY in
SX

S
Y we have [tσ] < t by the definition of the order < . The result follows imme-3

diately from the induction hypothesis.

Definition 3.7. For an element k of the tableau t, the hook hk are the elements5

of the tableau t to the right of it, including the element itself, and the elements
in t below k.7

It is well known ([5]) that the number of standard tableaus equals:

n!∏
k hk

.

4. The Ideal of Theta Identities

We apply the theory of the previous paragraph to cyclic covers of order 3. According9

to the theory, the hooks of the partitions correspond to tableau with 3 rows and m
elements in each row. Our first corollary is:11

Corollary 4.1. The dimension of the space of polynomials pΛ (and hence
θ3[eΛ](τR) corresponding to them) is:

(3m)! × 2
(m+ 2)!(m+ 1)!m!

.

Hence, the corresponding space of θ3[eΛ](τR) also has this dimension. We can
also give for this space:13

Corollary 4.2. Let ΛS be a standard partition then θ3[eΛS ](τR) is a basis for the
vector space spanned by theta constants, θ3[eΛ](τR) and Λ = Λ0,Λ1,Λ2 is a partition15

of {1 · · ·3k} such that |Λi| = k.

5. Example17

We consider the case of 6 branch points, so the genus of the surface is 4. We
enumerate the 15 partitions and the polynomials corresponding to them:19

(1) Λ = {(1, 2), (3, 4), (5, 6)}pΛ = (λ1 − λ2)(λ3 − λ4)(λ5 − λ6),
(2) Λ = {(1, 2), (3, 5), (4, 6)}pΛ = (λ1 − λ2)(λ3 − λ5)(λ4 − λ6),21

(3) Λ = {(1, 2), (3, 6), (4, 5)}pΛ = (λ1 − λ2)(λ3 − λ6)(λ4 − λ5),
(4) Λ = {(1, 3), (2, 4), (5, 6)}pΛ = (λ1 − λ3)(λ2 − λ4)(λ5 − λ6),23

(5) Λ = {(1, 3), (2, 5), (4, 6)}pΛ = (λ1 − λ3)(λ2 − λ5)(λ4 − λ6),
(6) Λ = {(1, 3), (2, 6), (4, 5)}pΛ = (λ1 − λ3)(λ2 − λ6)(λ4 − λ5),25

(7) Λ = {(1, 4), (2, 5), (3, 6)}pΛ = (λ1 − λ4)(λ2 − λ5)(λ3 − λ6),
(8) Λ = {(1, 4), (2, 6), (3, 5)}pΛ = (λ1 − λ4)(λ2 − λ6)(λ3 − λ5),27
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(9) Λ = {(1, 4), (2, 3), (5, 6)}pΛ = (λ1 − λ4)(λ2 − λ3)(λ5 − λ6),1

(10) Λ = {(1, 5), (2, 3), (4, 6)}pΛ = (λ1 − λ5)(λ2 − λ3)(λ4 − λ6),
(11) Λ = {(1, 5), (2, 4), (3, 6)}pΛ = (λ1 − λ5)(λ2 − λ4)(λ3 − λ6),3

(12) Λ = {(1, 5), (2, 6), (3, 4)}pΛ = (λ1 − λ5)(λ2 − λ6)(λ3 − λ4),
(13) Λ = {(1, 6), (2, 3), (4, 5)}pΛ = (λ1 − λ6)(λ2 − λ3)(λ4 − λ5),5

(14) Λ = {(1, 6), (2, 4), (3, 5)}pΛ = (λ1 − λ6)(λ2 − λ4)(λ3 − λ5),
(15) Λ = {(1, 6), (2, 5), (3, 4)}pΛ = (λ1 − λ6)(λ2 − λ5)(λ3 − λ4).7

In this case, by the dimension formula, the number of basis functions, θ3[eΛ] is:
2 × (6!/4!3!2!) = 5. The basis for the space spanned by the 15 polynomials are the9

polynomials that correspond to the standard tableaus:

(1) Λ = {(1, 2), (3, 4), (5, 6)}pΛ = (λ1 − λ2)(λ3 − λ4)(λ5 − λ6),11

(2) Λ = {(1, 2), (3, 5), (4, 6)}pΛ = (λ1 − λ2)(λ3 − λ5)(λ4 − λ6),
(3) Λ = {(1, 3), (2, 4), (5, 6)}pΛ = (λ1 − λ3)(λ2 − λ4)(λ5 − λ6),13

(4) Λ = {(1, 3), (2, 5), (4, 6)}pΛ = (λ1 − λ3)(λ2 − λ5)(λ4 − λ6),
(5) Λ = {(1, 4), (2, 5), (3, 6)}pΛ = (λ1 − λ4)(λ2 − λ5)(λ3 − λ6).15

The remaining 10 polynomials can be rewritten as a linear combinations of the set
above applying Garnier’s algorithm as in Theorem 3.7. For example:

(λ1 − λ2)(λ3 − λ6)(λ4 − λ5) = −(λ1 − λ2)(λ3 − λ4)(λ5 − λ6)

+ (λ1 − λ2)(λ3 − λ5)(λ4 − λ6),

(λ1 − λ3)(λ2 − λ6)(λ4 − λ5) = −(λ1 − λ3)(λ2 − λ4)(λ5 − λ6)

+ (λ1 − λ3)(λ2 − λ5)(λ4 − λ6),

(λ1 − λ6)(λ2 − λ5)(λ3 − λ4) = (λ1 − λ4)(λ2 − λ5)(λ3 − λ6)

− (λ1 − λ3)(λ2 − λ5)(λ4 − λ6).

The polynomials can be expressed in a similar way, leading to identities between
±θ3[eΛ](τR). We conclude by noting: in the case of hyperelliptic curves the identities17

between integral characteristics of theta constants evaluated at period matrices of
such curves arise from vanishing properties of theta functions. In our case, it is19

interesting to know whether an analogous situation arises. The following theorem
[6] is the only source of cubic theta identities known to the author:21

Theorem 5.1. Let
[µ
µ′

i
be an odd integral theta characteristics in genus 3m − 2

Then for any τ ∈ H3m−2 :

∑
0≤νi≤3

(−1)
P3m−2

i=1 µiνiθ3

[
µ

µ′ + 2ν
3

]
(τ) = 0

where H3m−2 is the Siegel upper half space of genus 3m− 2.

It is plausible that the vanishing of theta constants with rational characteristics23

of order 3 at τR will produce a new proof of the special identities obtained in
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this note using the Thomae formula. Finally, note that for all the identities the1

coefficients in (4) are ±1. We conjecture that this is a general phenomenon.

6. Conclusion3

There exists a large literature about Schottky–Jung identities and identities for
hyperelliptic curves. In this note we obtained special identities for other classes of5

algebraic curves. We plan to pursue these themes in future notes.
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